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Abstract —Three microstrip loop radiators designed to operate at fre-
quencies of 433, 915, and 1300 MHz are described. Empirical design
methods and experimental results obtained with phantoms and human
tissues are presented. The radiators are relatively well matched when
applied to water boluses followed by muscle phantoms or human tissues.
When used with the boluses, the radiators have circular surface-tempera-
ture distribution while the in-depth heating patterns are similar to those of
the aperture-type radiators.

I. INTRODUCTION

T ARIOUS microstrip radiators and arrays of radiators
for inducing local hyperthermia and for other medical
applications of microwaves have been investigated [1]-[7].
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For example, an array of printed dipoles was developed to
heat a large volume of tissue at 2450 MHz [1]. A coplanar-
waveguide coupler was designed to minimize stray cou-
pling in transmission measurements at 915 MHz [2]. Vari-
ous microstrip-ring radiators were also constructed for
inducing local hyperthermia at 915 and 2450 MHz [3], [5].
These radiators are matched when spaced a few millimeters
from muscle or muscle phantom or when muscle is covered
by a layer of fat. However, in these configurations, the
heating pattern of the small fundamental-mode radiators is
highly nonuniform because of the near-field effects. To
improve the uniformity of the heating pattern, higher order
mode, large-diameter radiators would be required. A mi-
crostrip slot radiator was also developed for inducing local
hyperthermia as well as for medical diagnostics at 2450
MHz {4]. This radiator has relatively low leakage, is matched
to human tissue, and has a heating pattern comparable to
aperture-type radiators [8]. A microstrip rectangular patch
antenna was found to be an efficient radiator when the
width of the patch was one wavelength (or less) in the
tissue [6].

Three microstrip loop radiators for medical applications
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Fig. 1. The geometry of the microstrip loop radiator.

are described in this paper. Two of them were designed for
inducing local hyperthermia at 433 and 915 MHz, while
the third one was constructed for detection of breast cancer
using microwave radiometry at 1300 MHz.

II. DESIGN PRINCIPLES

The geometry of the loop radiator is shown in Fig. 1.
The radiating element is a ring conductor on one side of a
dielectric substrate with a ground plane on the other side.
The ring is fed at ¢ = 7 and connected to the ground plane
at ¢ = 0 by a pin. The radiator is fed from a coaxial line by
a probe protruding the substrate.

The resonant frequency of the loop radiator radiating
into free space can be calculated by considering a transmis-
sion-line equivalent circuit. At resonance, the mean radius
of the ring conductor is given by ‘ )

R
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where ¢, is the effective relative dielectric constant, Z; is
the characteristic impedance of the loop-forming line, X; is
the reactance of the feed probe and the shorting pin, and
A, is the free-space wavelength.

When the loop radiator is coupled to a semi-infinite
lossy medium (viz., muscle), the transmission-line equiva-
lent circuit can no longer be used to calculate the resonant
frequencies. Therefore, an empirical design method was
used in this research.

Several radiators of various widths and mean radii of the
ring conductor were fabricated using a 0.318-cm duroid
substrate (¢, = 2.32) and a Custom High-K substrate (¢, =
10.0). Resonant frequencies of these radiators coupled to a
muscle phantom and to human tissue (skin-fat) were mea-
sured. From, these measurements, two empirical relation-
-ships between the resonant frequency and the dimensions
of the ring were developed. For a thick lossy medium with
the relative permittivity . the mean radius of the ring on
the duroid substrate (e, = 2.32) can be calculated from

6
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where f is the resonant frequency in gigahertz. However,
when the thickness of the lossy medium in contact with the
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TABLEI
DIMENSIONS OF THE LOOP RADIATORS FABRICATED USING
0.318-cm-THICK SUBSTRATES

Operating Typical
frequency fr R (cm} W(cm) loading
(MH2) : condition
433 2.32 2.0 0.5 Direct. contact
with muscle
433 2.32 1.6 0.5 Contact with a
water bolus fol-
lowed by a muscle
phantom
915 2.32 0.9 0.3 Direct contact
with muscle or
through a water
bolus
1300 2.32 1.9 0.4
Direct contact
1300 10.0 1.4 0.6 with human female
breast

ring conductor is less than the thickness of the dielectric
substrate, (2) becomes

3
flie]

where ¢, is the effective relative permittivity of the radiator
structure [5]!. The width of the loop-forming conductor is
selected to match the radiator to the 50-{ input line. The
dimensions of the loop radiators designed to operate at
frequencies of 433 MHz, 915 MHz, and 1.3 GHz under
various loading conditions are given in Table I.

R~

3

III. EXPERIMENTAL RESULTS

The radiators were placed in contact with the human -
female breast, a muscle phantom, and a distilled water
bolus followed by a muscle phantom and the return loss
was measured using a network analyzer. The experimental
results are shown in Figs. 2, 3, and 4. The radiators were
found to be well matched, especially to human tissues, in a
relatively broad range of frequencies.

The heating patterns of the 433 MHz and 915 MHz.
radiators were investigated using a thermographic method
as well as by liquid crystal films. Initia] measurements
indicated that the heating patterns of these radiators placed
in direct contact with the muscle phantom [9] were asym-
metrical with respect to the axis of the radiator. The region
near the feed point was heated more than the region near
the shorting pin. This was attributed to the near-field effect
created by the higher order modes. In order to obtain
symmetrical heating patterns, the energy of the higher
order modes should be dissipated before reaching the
tissue. To accomplish this, distilled-water boluses of vari-
ous thicknesses were used. Implantable miniature thermo-
couples as well as liquid crystal films were used to measure
the temperature distribution in the phantom after irradia-
tion for a few seconds.

Fig.' 5 depicts the temperature distribution in the phan-
tom along the main axis, after irradiation by a 100-W, 30-s
pulse at frequencies of 433 and 915 MHz. For comparison,

I'The effective relative permittivity é, includes the effect of the substrate
as well as the multilayer medium in contact with the radiator.
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Fig. 2. The return loss versus frequency for the 433-MHz loop radiator
in contact with a distilled-water bolus followed by a muscle phantom
for three different thicknesses of the bolus.
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Fig. 3. The return loss versus frequency for the 915-MHz loop radiator
in contact with a water bolus followed by a muscle phantom for three
different thicknesses of the bolus, as compared with the return loss of
the same radiator in direct contact with the human body-—upper
abdomen with 0.2 cm of skin, 2 cm of fat followed by muscle,

(estimated).
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Fig 4. The return loss versus frequency for the 1.3-GHz experimental
radiators 1n direct contact with the human female breast.
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Fig. 5. Temperature rise along the main axis in the muscle phantom
irradiated by experimental radiators versus distance from the surface of
the phantom. Experimental points for @ 433-MHz radiator, # 915-MHz
radiator, respectively, and — — — theoretical (plane-wave approxima-
tion).
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Fig. 6. Temperature distribution in the muscle phantom irradiated
through a water bolus by the 433-MHz radiator.
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Fig. 7. Temperature distribution in the muscle phantom irradiated
through a water bolus by the 915-MHz radiator

theoretical results corresponding to plane-wave irradiation
are also shown. For the plane-wave case the temperature
distribution was calculated from

AT= AT, e % (4)
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where AT, is the maximum increase in temperature at
z=0 and « is the attenuation constant in the phantom.
The measured values of the attenuation constant for phan-
toms are 2.3 dB/cm at 433 MHz and 3.1 dB/cm at 915
MHz. As expected the temperature decreases exponentially
with the distance from the surface.

To determine and analyze the surface and in-depth
heating patterns, liquid crystal films were used. The initial
phantom temperature was kept between 24 and 25°C and
the temperature range of liquid crystal film (Edmund Sci-
entific Co. No. 72374) was 25-30°C. Immediately follow-
ing irradiation, the liquid crystal film was placed in contact
with the phantom and heating patterns were photographed
using a Polaroid camera. Different colors of the liquid
crystal, from red to blue, indicate different temperatures.
These heating profiles were later mapped and are shown in
Figs. 6 and 7 for 433-MHz and 915-MHz radiators, respec-
tively. The heating pattern in the plane of the radiator with
the distilled-water bolus is symmetrical in respect to the
axis. The penetration depth of heating defined as 1 /eAT,,,
for the 433 MHz, 3.2-cm diameter radiator is 1.6 cm, while
for the 915 MHz, 1.8-cm diameter radiator is 1.1 cm. The
corresponding values for the plane wave are 2.1 cm and 1.4
cm, respectively.

IV. CONCLUSIONS

Three microstrip loop radiators matched to the human
tissue or to a distilled water bolus followed by a muscle
phantom and operating at 433, 915, and 1300 MHz were
designed using empirical formulas. With the water bolus,
the heating pattern of the radiators is symmetrical in
respect to the axis. The penetration depth of the heating
depends upon the frequency of operation and the size of
the radiator and was found to be equal to 1.6 cm for the
433-MHz radiator and 1.1 cm for the 915-MHz radiator.
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