

Shihe Li (S'81) was born in Chongqing, Sichuan, China, on April 28, 1941. He graduated from the Chentu Institute of Radio Engineering, China, in 1963, and finished his graduate program at the Department of Physics, Nanking University, China, in 1966.

From 1968 to 1979 he was a Research Engineer at the Fourth Research Institute, Ministry of Posts and Telecommunications, China. He had been engaged in the development of high-efficient reflector antennas, microwave ferrite materials, low loss nonreciprocal microwave devices, and microwave IC's. He arrived at the Ecole Polytechnique de Montréal, Montréal, Canada, in 1980 as a visiting scholar and he is currently working towards his Ph.D. degree. His interests are in electromagnetic theory, computer-aided microwave design and measurement, microwave IC's, microwave power, and antennas.

Renato G. Bosisio (M'79) was born in Monza, Italy, on June 28, 1930. He received the B.Sc. degree from McGill University, Montréal, Canada, in 1951, and the M.S.E.E. degree from the University of Florida, Gainesville, in 1963.

He has been engaged in microwave R & D work with various firms in Canada (Marconi and Varian), in the U.S. (Sperry), and in England (English Electric). He is presently Head of the Section d'Electromagnétisme et d'Hyperfréquences at the Ecole Polytechnique de Montréal, Montréal, Canada, where he teaches microwave and is actively engaged in microwave power applications, instrumentation, and dielectric measurements.

He is a member of Phi Kappa Phi, Sigma Xi, and l'Ordre des Ingénieurs du Québec.

Microstrip Loop Radiators for Medical Applications

INDER J. BAHL, SENIOR MEMBER, IEEE, STANISLAW S. STUCHLY, SENIOR MEMBER, IEEE, J. J. W. LAGENDIJK, AND MARIA A. STUCHLY, SENIOR MEMBER, IEEE

Abstract—Three microstrip loop radiators designed to operate at frequencies of 433, 915, and 1300 MHz are described. Empirical design methods and experimental results obtained with phantoms and human tissues are presented. The radiators are relatively well matched when applied to water boluses followed by muscle phantoms or human tissues. When used with the boluses, the radiators have circular surface-temperature distribution while the in-depth heating patterns are similar to those of the aperture-type radiators.

I. INTRODUCTION

VARIOUS microstrip radiators and arrays of radiators for inducing local hyperthermia and for other medical applications of microwaves have been investigated [1]–[7].

Manuscript received April 13, 1981; revised January 11, 1982. An abbreviated version of this paper was presented at the 1981 International Microwave Symposium, June 1981, Los Angeles, CA.

I. J. Bahl is with International Telephone and Telegraph, Electro-Optical Products Division, 7635 Plantation Road, Roanoke, VA 24019.

S. S. Stuchly is with the Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.

J. J. W. Lagendijk is with the Department of Radiotherapy, University Hospital Utrecht, Catharinaesingel 101, 3500 CG Utrecht, The Netherlands.

M. A. Stuchly is with Health and Welfare Canada, Radiation Protection Bureau Ottawa, Ontario K1A 0L2, Canada.

For example, an array of printed dipoles was developed to heat a large volume of tissue at 2450 MHz [1]. A coplanar-waveguide coupler was designed to minimize stray coupling in transmission measurements at 915 MHz [2]. Various microstrip-ring radiators were also constructed for inducing local hyperthermia at 915 and 2450 MHz [3], [5]. These radiators are matched when spaced a few millimeters from muscle or muscle phantom or when muscle is covered by a layer of fat. However, in these configurations, the heating pattern of the small fundamental-mode radiators is highly nonuniform because of the near-field effects. To improve the uniformity of the heating pattern, higher order mode, large-diameter radiators would be required. A microstrip slot radiator was also developed for inducing local hyperthermia as well as for medical diagnostics at 2450 MHz [4]. This radiator has relatively low leakage, is matched to human tissue, and has a heating pattern comparable to aperture-type radiators [8]. A microstrip rectangular patch antenna was found to be an efficient radiator when the width of the patch was one wavelength (or less) in the tissue [6].

Three microstrip loop radiators for medical applications

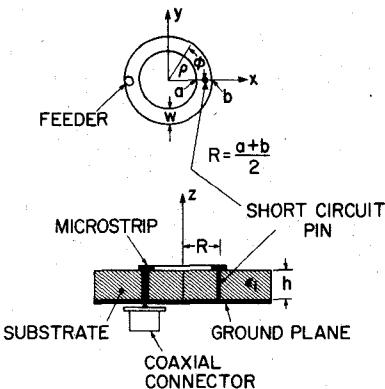


Fig. 1. The geometry of the microstrip loop radiator.

are described in this paper. Two of them were designed for inducing local hyperthermia at 433 and 915 MHz, while the third one was constructed for detection of breast cancer using microwave radiometry at 1300 MHz.

II. DESIGN PRINCIPLES

The geometry of the loop radiator is shown in Fig. 1. The radiating element is a ring conductor on one side of a dielectric substrate with a ground plane on the other side. The ring is fed at $\phi = \pi$ and connected to the ground plane at $\phi = 0$ by a pin. The radiator is fed from a coaxial line by a probe protruding the substrate.

The resonant frequency of the loop radiator radiating into free space can be calculated by considering a transmission-line equivalent circuit. At resonance, the mean radius of the ring conductor is given by

$$R = \frac{\lambda_0}{2\pi^2\sqrt{\epsilon_e}} \tan^{-1} \left(\frac{3X_L Z_0}{2X_L^2 - Z_0^2} \right) \quad (1)$$

where ϵ_e is the effective relative dielectric constant, Z_0 is the characteristic impedance of the loop-forming line, X_L is the reactance of the feed probe and the shorting pin, and λ_0 is the free-space wavelength.

When the loop radiator is coupled to a semi-infinite lossy medium (viz., muscle), the transmission-line equivalent circuit can no longer be used to calculate the resonant frequencies. Therefore, an empirical design method was used in this research.

Several radiators of various widths and mean radii of the ring conductor were fabricated using a 0.318-cm duroid substrate ($\epsilon_r = 2.32$) and a Custom High-K substrate ($\epsilon_r = 10.0$). Resonant frequencies of these radiators coupled to a muscle phantom and to human tissue (skin-fat) were measured. From these measurements, two empirical relationships between the resonant frequency and the dimensions of the ring were developed. For a thick lossy medium with the relative permittivity ϵ_r , the mean radius of the ring on the duroid substrate ($\epsilon_r = 2.32$) can be calculated from

$$R \simeq \frac{6}{f\sqrt{|\epsilon_r|}} \quad (2)$$

where f is the resonant frequency in gigahertz. However, when the thickness of the lossy medium in contact with the

TABLE I
DIMENSIONS OF THE LOOP RADIATORS FABRICATED USING
0.318-cm-THICK SUBSTRATES

Operating frequency (MHz)	ϵ_r	R (cm)	W (cm)	Typical loading condition
433	2.32	2.0	0.5	Direct contact with muscle
433	2.32	1.6	0.5	Contact with a water bolus followed by a muscle phantom
915	2.32	0.9	0.3	Direct contact with muscle or through a water bolus
1300	2.32	1.9	0.4	Direct contact with human female breast
1300	10.0	1.4	0.6	

ring conductor is less than the thickness of the dielectric substrate, (2) becomes

$$R \simeq \frac{3}{f\sqrt{|\epsilon_r|}} \quad (3)$$

where ϵ_r is the effective relative permittivity of the radiator structure [5]¹. The width of the loop-forming conductor is selected to match the radiator to the 50- Ω input line. The dimensions of the loop radiators designed to operate at frequencies of 433 MHz, 915 MHz, and 1.3 GHz under various loading conditions are given in Table I.

III. EXPERIMENTAL RESULTS

The radiators were placed in contact with the human female breast, a muscle phantom, and a distilled water bolus followed by a muscle phantom and the return loss was measured using a network analyzer. The experimental results are shown in Figs. 2, 3, and 4. The radiators were found to be well matched, especially to human tissues, in a relatively broad range of frequencies.

The heating patterns of the 433 MHz and 915 MHz radiators were investigated using a thermographic method as well as by liquid crystal films. Initial measurements indicated that the heating patterns of these radiators placed in direct contact with the muscle phantom [9] were asymmetrical with respect to the axis of the radiator. The region near the feed point was heated more than the region near the shorting pin. This was attributed to the near-field effect created by the higher order modes. In order to obtain symmetrical heating patterns, the energy of the higher order modes should be dissipated before reaching the tissue. To accomplish this, distilled-water boluses of various thicknesses were used. Implantable miniature thermocouples as well as liquid crystal films were used to measure the temperature distribution in the phantom after irradiation for a few seconds.

Fig. 5 depicts the temperature distribution in the phantom along the main axis, after irradiation by a 100-W, 30-s pulse at frequencies of 433 and 915 MHz. For comparison,

¹The effective relative permittivity ϵ_r includes the effect of the substrate as well as the multilayer medium in contact with the radiator.

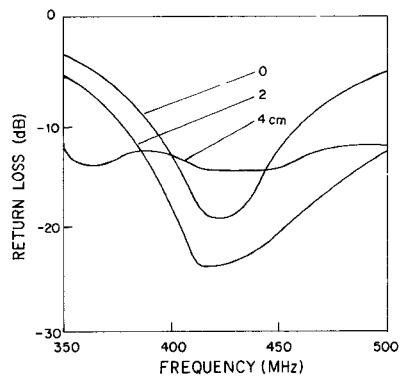


Fig. 2. The return loss versus frequency for the 433-MHz loop radiator in contact with a distilled-water bolus followed by a muscle phantom for three different thicknesses of the bolus.

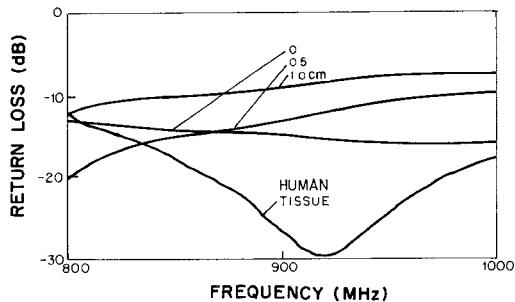


Fig. 3. The return loss versus frequency for the 915-MHz loop radiator in contact with a water bolus followed by a muscle phantom for three different thicknesses of the bolus, as compared with the return loss of the same radiator in direct contact with the human body—upper abdomen with 0.2 cm of skin, 2 cm of fat followed by muscle, (estimated).

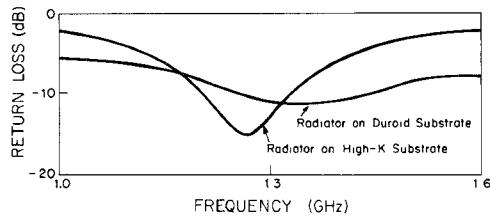


Fig. 4. The return loss versus frequency for the 1.3-GHz experimental radiators in direct contact with the human female breast.

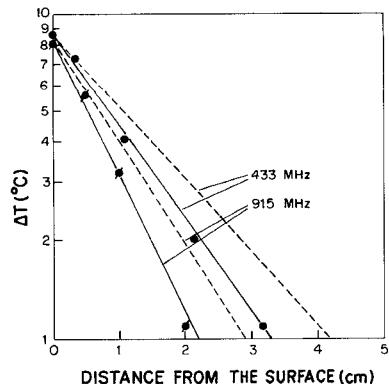


Fig. 5. Temperature rise along the main axis in the muscle phantom irradiated by experimental radiators versus distance from the surface of the phantom. Experimental points for ● 433-MHz radiator, ■ 915-MHz radiator, respectively, and —— theoretical (plane-wave approximation).

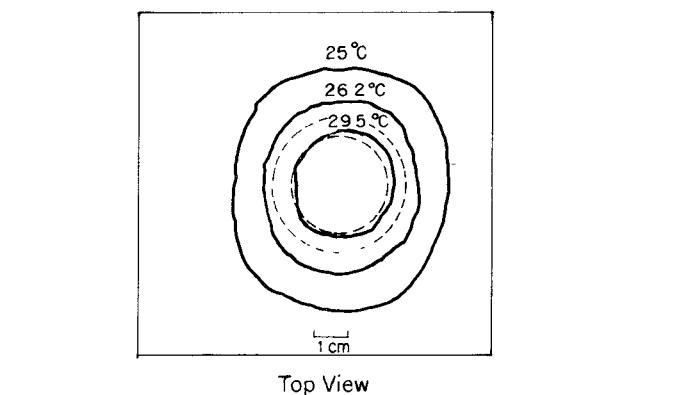
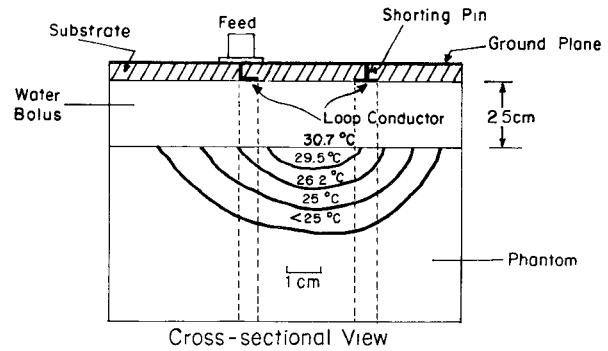



Fig. 6. Temperature distribution in the muscle phantom irradiated through a water bolus by the 433-MHz radiator.

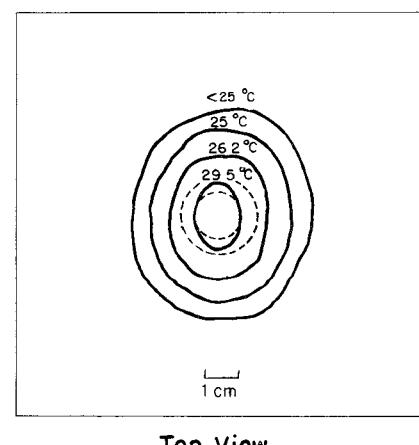



Fig. 7. Temperature distribution in the muscle phantom irradiated through a water bolus by the 915-MHz radiator.

theoretical results corresponding to plane-wave irradiation are also shown. For the plane-wave case the temperature distribution was calculated from

$$\Delta T = \Delta T_m e^{-2\alpha z} \quad (4)$$

where ΔT_m is the maximum increase in temperature at $z=0$ and α is the attenuation constant in the phantom. The measured values of the attenuation constant for phantoms are 2.3 dB/cm at 433 MHz and 3.1 dB/cm at 915 MHz. As expected the temperature decreases exponentially with the distance from the surface.

To determine and analyze the surface and in-depth heating patterns, liquid crystal films were used. The initial phantom temperature was kept between 24 and 25°C and the temperature range of liquid crystal film (Edmund Scientific Co. No. 72374) was 25–30°C. Immediately following irradiation, the liquid crystal film was placed in contact with the phantom and heating patterns were photographed using a Polaroid camera. Different colors of the liquid crystal, from red to blue, indicate different temperatures. These heating profiles were later mapped and are shown in Figs. 6 and 7 for 433-MHz and 915-MHz radiators, respectively. The heating pattern in the plane of the radiator with the distilled-water bolus is symmetrical in respect to the axis. The penetration depth of heating defined as $1/e\Delta T_m$, for the 433 MHz, 3.2-cm diameter radiator is 1.6 cm, while for the 915 MHz, 1.8-cm diameter radiator is 1.1 cm. The corresponding values for the plane wave are 2.1 cm and 1.4 cm, respectively.

IV. CONCLUSIONS

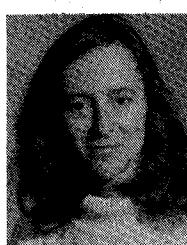
Three microstrip loop radiators matched to the human tissue or to a distilled water bolus followed by a muscle phantom and operating at 433, 915, and 1300 MHz were designed using empirical formulas. With the water bolus, the heating pattern of the radiators is symmetrical in respect to the axis. The penetration depth of the heating depends upon the frequency of operation and the size of the radiator and was found to be equal to 1.6 cm for the 433-MHz radiator and 1.1 cm for the 915-MHz radiator.

REFERENCES

- [1] F. Sterzer *et al.*, "Microwave apparatus for the treatment of cancer," *Microwave J.*, vol. 23, pp. 39–44, Jan. 1980.
- [2] M. F. Iskander and C. H. Durney, "An electromagnetic energy coupler for medical applications," *Proc. IEEE*, vol. 67, pp. 1463–1465, Oct. 1979.
- [3] I. J. Bahl, S. S. Stuchly, and M. A. Stuchly, "A microstrip antenna for medical applications," in *IEEE MTT-S Int. Microwave Symp. Dig.*, Washington, DC, May 27–30, 1980, pp. 358–360.
- [4] I. J. Bahl, S. S. Stuchly, and M. A. Stuchly, "New microstrip slot radiator for medical applications," *Electron. Lett.*, vol. 16, pp. 731–732, Sept. 1980.
- [5] I. J. Bahl, S. S. Stuchly, and M. A. Stuchly, "A new microstrip radiator for medical applications," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-28, pp. 1464–1468, Dec. 1980.
- [6] K. M. Parsons, "Evaluation and performance of rectangular patch antennas for microwave diathermy at 2450 MHz," M.Sc. Thesis, Dep. Elec. Eng., Univ. of Maryland, 1980.
- [7] S. S. Stuchly, I. J. Bahl, and M. A. Stuchly, "Microstrip ring-type radiators for local hyperthermia," presented at Third Int. Symp. Cancer Therapy by Hyperthermia, Drugs and Radiation, Colorado State University, Fort Collins, June 22–26, 1980.
- [8] A. W. Guy *et al.*, "Development of a 915-MHz direct contact applicator for therapeutic heating of tissues," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 550–556, Aug. 1978.
- [9] A. W. Guy, "Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, pp. 205–215, Feb. 1971.

Inder J. Bahl (M'80) was born in Sham Chaurasi, Punjab, India on January 27, 1944. He received the M.Sc. degree in physics and M.Sc (Tech.) in electronics from the Birla Institute of Technology and Science, Pilani, India, in 1967 and 1969, respectively. In 1975 he received the Ph.D. degree in electrical engineering from the Indian Institute of Technology (IIT), Kanpur, India.

From 1969 to 1970 he worked in Tropo Scatter Communication Project, in the Department of Electrical Engineering at IIT, Kanpur. During 1971 to 1974 he was Senior Research Assistant in the same department. From 1974 to 1978 he was with the Advanced Centre for Electronic Systems, IIT, Kanpur as a Research Engineer, where he was engaged in research in p-i-n diode phase shifters, microwave integrated circuits, printed antennas, phased-array radar, and industrial applications of microwaves. In January 1979 he joined the Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario, Canada, where he is presently a Research Associate. He is now working on microwaves in biological systems, microwave and millimeter-wave integrated circuits, microstrip antennas, and millimeter-wave antennas. Dr. Bahl is the author of over 40 research papers in the areas of microwave theory and techniques as well as antennas. He published two books, *Microstrip Lines and Slotlines* (Dedham, Artech House, 1979) and *Microstrip Antennas* (Artech House, 1980).



Stanislaw S. Stuchly (M'70–SM'72) was born in Lwow, Poland, on November 20, 1931. He received the B.Sc. degree from the Technical University, Gliwice, Poland, and the M.Sc. degree from the Warsaw Technical University, both in electrical engineering, in 1953 and 1958, respectively, and the Ph.D. degree from the Polish Academy of Sciences, Warsaw, Poland, in 1968.

From 1953 to 1959 he was a Research Engineer in the Industrial Institute for Telecommunications, Warsaw, Poland. From 1959 to 1963 he was with the Warsaw Technical University. In 1963 he joined UNIPAN–Scientific Instruments, subsidiary of the Polish Academy of Sciences. From 1970 to 1976 he was with the University of Manitoba, Winnipeg, Canada. Since 1977 he has been with the University of Ottawa, Canada, where he is presently a Professor of Electrical Engineering.

J. J. W. Lagendijk, photograph and biography not available at the time of publication.

Maria A. Stuchly (M'71–SM'76) received the M.S. and Ph.D. degrees in electrical engineering from Warsaw Technical University and Polish Academy of Sciences in 1962 and 1970, respectively.

From 1962 to 1970 she was employed as a Senior R & D Engineer in a subsidiary of the Polish Academy of Sciences in Warsaw, Poland. Between 1970 and 1976 she was engaged in research in the field of microwave instrumentation and measurements, and microwave power applications at the Departments of Electrical Engineering and Food Science at the University of Manitoba. Since 1976 she has been with the Non-Ionizing Radiation Section, Radiation Protection Bureau, Health and Welfare Canada, where she is responsible for the development of microwave radiation protection standards and carries out research in the field of biological effects of microwave radiation. She is also nonresident Professor of Electrical Engineering at the University of Ottawa.

Dr. Stuchly is a member of the Board of Directors of the Bioelectromagnetics Society and a member of IEEE Technical Committee of Man and Radiation.